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The Problem

• A significant quantity of aluminum and chromium are 
present in HLW storage in the Hanford tank farm

• Most of this aluminum is insoluble
• Much of the chromium is insoluble as well
• Aluminum doesn’t go into glass well
• Chromium really doesn’t go into glass well
• HLW sludges are to be disposed of in glass



• Most abundant elements in the tanks include Fe, Al, 
P, Ca, Si, and Bi

• Aluminum is one of the most prevalent elements 
(nearly 70% of the sludge)

• Aluminum is mainly found in the form of:
– Gibbsite {Al(OH)3} – as micrometer sized colloidal particles
– Boehmite {AlOOH} – as agglomerates of nanometer sized 

particles

• Chromium is a minor component (~ 3%) of the 
sludge

Background



Al Sources in Hanford Sludge Waste
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Al key sources

• Redox
– Contains predominately boehmite
– Average 90+ % aluminum in solids
– Average leach factor from BBI of 0.42

• Cladding Waste from Purex
– Contains predominately gibbsite
– Average 90+ % aluminum in solids
– Average leach factor from BBI of 0.8

• Bi-Phosphate saltcake
– Most samples to date blended with other sludges

• Cladding Waste from Redox
– Effectively no data
– Average leach factor from BBI of 0.9



Cr Sources in Hanford Sludge Waste
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S/SX Sludges

• Predominate Al phase is boehmite
• Gibbsite is easily dissolved by heating with caustic
• Boehmite requires more aggressive conditions 

(higher temperatures and longer times)
• Dissolution of Cr is simultaneous with aluminum



Composition of Typical S/SX Sludge of 
Interest
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S-104 (Redox) - boehmite



SEM examples from literature



Test Protocol

• Typically about 1 g of sludge in 100 mL of caustic in 
sealed vessel

• Agitated – either stir bar or shaken
• Temperature maintained by a heating block
• Small – 1 mL - samples removed periodically
• Samples analyzed for metal content
• Residual sludge digested and analyzed to complete 

material balance



Aluminum Solids (Mass Fraction) 
for 3 M NaOH in Tank S-110
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S-110 Boehmite Dissolution at 100 ºC
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Aluminum Sludge Leaching ModelAluminum Sludge Leaching Model

Publication
R.A. Peterson, G.J. Lumetta, B.M. Rapko, and A.P. Poloski
“Modeling of Boehmite Leaching from Actual Hanford High-Level Waste Samples” Sep. Sci. Tec. (accepted 
12/06)
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S-101 Boehmite Dissolution at 100 ºC 
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S-107 Boehmite Dissolution at 100 ºC –
3M NaOH
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Composition for Redox waste after extended 
leach
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Boehmite Conclusions

• Boehmite can be dissolved from HLW sludge with 
sufficient time, temperature and caustic

• A model was developed based on the boehmite
dissolution rate data

• Additional characterization data (correlated with 
leaching data) needed to validate dissolution model 
and to validate simulant development



Gibbsite dissolution data

• Limited testing has been performed with HLW 
sludge samples containing sludge

• No kinetic information is available for gibbsite 
dissolution

• Test typically employed 5 or 10 hour contact time at 
100 °C with 3 M NaOH.



C-105 example (CWP) - gibbsite



Typical CWP waste before leaching
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CWP Composition after leaching
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How much caustic is required?

• Avoid precipitation after filtration
– Dilution can cause precipitation
– Cooling can cause precipitaton

• Provide sufficient caustic to get adequate kinetics
– For feeds that are a blend of boehmite and gibbsite, 

gibbsite will dissolve first and may decrease boehmite 
dissolution



Recrystallization of gibbsite from 
supersaturated solutions
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Al concentration in 3 M NaOH solution
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Conclusions for Al Dissolution

• Extended times (at least 72 hours) required to dissolve 
boehmite

• Dissolution rate is sensitive to caustic concentration and to 
total aluminum inventory

• Limited data available on gibbsite dissolution
• Additional boehmite testing will focus on obtaining additional 

characterization data to support boehmite simulant validation
• Additional gibbsite testing required to provide better basis for

gibbsite dissolution performance
• Interactions between gibbsite and boehmite may be 

important for blended feeds.



Cr Sources

• Redox
– Dissolves as boehmite dissolves

• S-Salt cake
– Highly concentrated Cr stream (approximately 50% of insoluble solids 

are Cr).
– Some dissolution at 100 ºC – 12% in 10 hours.

• Bi-Phosphate saltcake
– Most samples to date blended with other sludges



Redox Chromium Solids (Mass Fraction) 
for 3 M NaOH in Tank S-110

Lumetta, G.J. et al., Caustic Leaching of Hanford Tank S-110 Sludge. 
PNNL-13702; Pacific Northwest National Laboratory: Richland, WA, 2001. 
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Chromium Sources in Saltcake
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Composition of High Cr Saltcake (With 
Na)
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Composition of High Cr Saltcake
(Without Na)
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S- Saltcake composition
- without Na which is 75% of metal mass
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Cr removal mechanism

• Cr is oxidized from Cr3+ (insoluble) to Cr6+ (soluble)
• Oxidation can be by air or by an oxidant (permanganate)

– Permanganate oxidizes 80-95% of the available chromium
– Rate increases with temperature
– High hydroxide during addition results in Pu solubilization
– No detailed rate data available
– Air oxidation appears to be slow



Slow Apparent Oxygen Dissolution Rate, 
Tank U-108
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Slow Apparent Oxygen Dissolution Rate, 
Tank U-109
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Composition of Initial and Final, Leached 
U-108 Samples
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Composition of Initial and Final, Leached 
U-109 Samples
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Permanganate Reaction

( ) OHMnOCrOOHMnOOHCr 22
2

443 2++→++ −−−

• Cr(III) is poorly soluble in alkaline media
• Cr(III) dissolves in the presence of permanganate 

when the Cr(III) is oxidized to Cr(VI)
• Cr(VI) is highly soluble in alkaline media



Conclusions for Cr Dissolution

• Air oxidation appears adequate for treatment of Cr in 
Hanford sludge samples

• More aggressive oxidation techniques may be 
required to deal with Cr present in saltcake

• Additional testing is planned to further investigate 
the use of permanganate to achieve oxidation of Cr 
in saltcake samples. 

• Successful demonstration will result in dramatic 
reduction in the number of HLW canisters and a 
concomitant reduction in life cycle costs. 



Testing Objectives
• Obtain leaching performance data for actual waste 

for the major species involved in leaching reactions
– Supports simulant revision/development
– Provides basis for leaching performance

• Obtain filtration performance data for a spectrum of 
additional actual waste samples

• Develop preliminary simulants based on available 
data for use in pilot scale work (pilot scale scope not 
covered here)

• Revise simulants based on actual waste results
• Test preliminary and revised simulants under variety 

of parametric conditions at the bench scale.



Overall approach

• Identify components of interest
• Identify primary sources of components of interest
• Develop component simulants for each of the 

components of interest
• Identify tank samples from the sources of 

components of interest
• Characterize and test composite samples from 

multiple tanks representing feed groupings. 
• More details to be provided in R&D plans discussion 


